Schedule


* = optional reading

Date Topic Readings / Videos Assignments
09 Oct

16 Oct

MLPs, Gradient Descent & Backpropagation

First Steps
23 Oct

CNNs

tf.data & Tensorboard
30 Oct

CNNs (cont.)

Basic CNNs & Keras
06 Nov

RNNs

ResNet
13 Nov

RNNs (cont.)

Sentiment Classification Part 1
20 Nov

Attention and Memory

Sentiment Classification Part 2
27 Nov

Word Embeddings & Language Models

Attention-based NMT
04 Dec

Introspection

Word2Vec
11 Dec

Autoencoders & Self-Supervised Representation Learning

Introspection
18 Dec

Regularization & Optimization

Self-supervised Learning
08 Jan

Practical Methodology

15 Jan

Graph Neural Networks

Adversarial Examples
22 Jan

Investigating Data Issues